Attribuutiomallinnus auttaa tunnistamaan eri kanavien vaikutuksen

Attribuutiomallinnus ja jalkapallo

Attribuutiomallinnus ja jalkapallo

“Kaikki mallit ovat virheellisiä, mutta jotkut niistä ovat hyödyllisiä.”
George E. P. Box

Jokainen markkinoija on kiinnostunut samasta asiasta: mainonnan tuotosta.

Todennäköisesti sinäkin teet digitaalista mainontaa koskevia valintoja ja päätöksiä analytiikan ja tuottolukujen avulla. Yhdeksässä tapauksessa kymmenestä teet sen viimeisen klikkauksen attribuutiomallin avulla.

Viimeisen klikkauksen attribuutiomallissa koko kunnia kaupasta annetaan maalintekijälle, eikä syöttöpisteitä lasketa lainkaan.  Se johtaa usein vääriin ratkaisuihin.

Viimeisen klikkauksen analytiikka johtaa huonoihin päätöksiin

Asiakkaat kohtaavat yrityksesi lukuisia kertoja ennen ostopäätöksen syntymistä. Toisinaan kohtaaminen on digitaalinen, toisinaan analoginen, toisinaan verkossa, toisinaan kivijalassa.

Silti lähes jokaisessa suomalaisessa yrityksessä mitataan eri kanavien tuottoa viimeisen kohtaamisen perusteella.

Tällöin webanalytiikka laskee myynnin pelkästään viimeisen kohtaamisen ansioksi. Jos siis asiakas saapui sivustolle email-suorasta ja teki ostoksen, katsotaan myyntitapahtuma email-suoran ansioksi. Jos taas myynti tapahtui Adwords-mainoksen klikkauksen jälkeen, oli myynti Adwordsin ansiota.

Tämä johtaa helposti markkinointibudjetin vääriin painotuksiin.

Viimeisen klikkauksen harha

Viimeisen klikkauksen analytiikka unohtaa, että markkinointi on joukkuelaji.

Jos futisvalmentaja luottaisi viimeisen klikkauksen analytiikkaan, hän antaisi potkut kaikille paitsi maalintekijöille.

Futisvalmentaja ymmärtää kuitenkin sen, mitä markkinoija ei aina muista. Jonkun on napattava pallo vastustajalta ja syötettävä se maalintekijälle. Joukkue tarvitsee myös maalivahdin, vaikka hän ei olisi tehnyt viimeisen kvartaalin aikana yhtään maalia.

Sama koskee myös markkinointia. Maalintekijä tarvitsee syöttäjiä, asiakas on syötettävä kanavalta toiselle, jotta lopulta email-suora tai Adwords-brändimainos tekee maalin.

Jos funnelin yläpäähän ei kerätä massaa, näyttävät maalitilastotkin heikolta.

Google Analyticsin attribuutiomallit

Jokaisen markkinoijan on tämän vuoksi tunnettava attribuutiomallinnuksen perusteet.

Maksuton Google Analytics tarjoaa sinulle hyvät mahdollisuudet kokeilla erilaisia attribuutiomalleja heuristista attribuutiomallinnusta varten.

Google Analytics antaa sinulle useita vaihtoehtoja.

Heuristinen attribuutiomallinnus on helppoa. Voit kokeilla eri vaihtoehtoja ja tutkia, miten eri vaihtoehdot vaikuttavat myynnin jyvittämiseen eri kanaville.

Google Analyticsin lisäksi myös muut järjestelmät (esimerkiksi Adform) tarjoavat attribuutiomallinnukseen sopivia työkaluja. Ne eroavat jonkin verran Analyticsin malleista, mutta pääperiaatteet ovat hyvin samanlaisia.

Näiden heurististen mallien lisäksi Google Analytics 360 sisältää ns. dataan perustuvan attribuutiomallin. Dataan perustuva attribuutiomalli käyttää hyväkseen yhteistoiminnallisten pelien teoriaa ja pelin ratkaisua ns. Shapleyn arvon avulla.

Kaikki mallit ovat virheellisiä

Mutta kysyt todenäköisesti: mikä näistä malleista sitten on se “oikea”, mikä attribuutiomalli vastaa “todellisuutta” parhaiten?

“Kaikki mallit ovat virheellisiä, mutta jotkut niistä ovat hyödyllisiä”, totesi tilastotieteilijä George E. P. Box.

Lause pitää mainiosti paikkansa myös attribuutiomallien kohdalla. Ne kaikki valottavat saman todellisuuden eri puolia, mutta jokainen niistä on “virheellinen”.

Analyticsin tarjoamat heuristiset attribuutiomallit eivät myöskään vastaa kaikkiin niihin kysymyksiin, joita markkinoijalla on.

Jos haluat tarkempaa tietoa esimerkiksi kanavakohtaisesta marginaalituotosta (“Paljonko saan lisää myyntiä, jos lisään kampanjan/kanavan budjettia X eurolla?”), eivät heuristiset attribuutiomalit valitettavasti kykene antamaan sinulle vastausta.

Vertailemalla eri attribuutiomallien tuloksia voit kuitenkin saada ideoita markkinointibudjetin parempaa kohdistamista varten – riippuen siitä, minkälaisia tavoitteita kampanjoilla on.

Samoin heuristinen analyysi auttaa ymmärtämään, missä ostopolun vaiheessa eri kampanjat ja kanavat vaikuttavat asiakkaaseen. Se taas auttaa kertomaan eri kanavissa oikeaa viestiä asiakkaillesi.

Muista myös syöttöpisteet!

Lähes jokaisessa yrityksessä digitaalisten markkinointikanavien tuottoa arvioidaan perinteisen viimeisen klikin tai viimeisen epäsuoran klikin attribuution avulla.

Viimeisen epäsuoran klikin attribuutio johtaa usein siihen, että viimeisille kohtaamisille lasketaan liian paljon arvoa. Silloin keskitytään kaupan klousaamiseen ja unohdetaan lähettää asiakkaita funnelin yläpäähän.

Käytä siis heuristisia attribuutiomalleja ja analysoi funnelin eri vaiheiden toimintaa. Silloin osaat rakentaa voittavan joukkueen, jossa maalintekijälle syötetään usein!

Artikkelit samasta aiheesta

Tekoäly ja koneoppiminen rakentavat parempia ostajapersoonia

Ostajapersoona on tuttu työkalu markkinoinnin johtamisen apuna. Suurten kielimallien ja koneoppimisen avulla dataan perustuvien persoonien rakentaminen onnistuu aikaisempaa tehokkaammin. Mitä ostajapersoona tarkoittaa? Ostajapersoonat kuvaavat yrityksen kannalta ideaalisia ostajia. Ostajapersoonan esitys […]

Kiinnostuitko tästä aiheesta?

Soita meille 020 788 8120 tai täytä alla oleva lomake niin jatketaan juttua!